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Abstract 

A simple perturbation formula is presented for characterizing the natural frequencies of a 
dielectric object embedded in an isotropic, homogeneous medium of low wave impedance. For this 
situation the natural frequencies of the object can be obtained from the interior "cavity" resonances of 
the same object when immersed in a perfect conductor. Since the cavity modes are assumed to be known 
or easily measurable for a given body of interest, the presented formulation allows determination of an 
object's natural frequencies when it is embedded in any external medium of sufficiently low wave 
impedance. Considering that knowledge of an object's natural resonances can be used in a target 
identification scheme, the perturbation technique described here may be useful in the development of 
technologies to identify buried dielectric targets under appropriate soil conditions. 
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I. Introduction 

For the identification of a buried target using a singularity-based method, the natural resonances 
of the target must be known. The determination of target resonances for a perfectly conducting target 
in a homogeneous space has received considerable attention [1]. The natural modes (exterior resonances) 
of a target in any isotropic, homogeneous environment can be related to the resonances of the target when 
in free space via a scaling procedure [2]. This simplifies the identification problem, assuming that the 
medium external to the object is known, and that the target's free space resonances have been determined. 

For the identification of a dielectric target, a natural frequency scaling procedure can also be 
employed. In this note, though, we will focus on the development of a perturbation formula for natural 
resonances of a target embedded in a medium having a wave impedance small compared to that of the 
target. This situation is of practical significance since many targets of interest have low relative 
permittivity (such as a dielectric mine with e =2.5e0), while the permittivity of common soils may often 

be in the range e = 10e0-30e0, with conductivities ranging from 10"3 to 10~2 typical. Although low 
permittivity soils may also be commonly found, attention is focused here on relatively high permittivity 
soils with conductivities in the useful range stated above. If the conductivity is too large, electromagnetic 
methods will not be applicable due to signal attenuation. 

For soils of sufficiently high permittivity, the natural resonances of the target are simply related 
to the interior resonances of the same target when surrounded by an exterior medium of vanishing wave 
impedance. A previous note [3] considered this problem, where simple perturbation formulas were 
derived for the natural resonances of an infinite dielectric slab and sphere. Here we present a general 
perturbation formula for the internal resonances, applicable to any shape target embedded in an exterior 
region having low wave impedance.  Additional material related to this problem can be found in [4]. 

n. Perturbation Formulas 

Consider a lossless object characterized by e^u^ embedded in a lossy medium having el,\i0,a1 

with Oj the (real) conductivity. Working in the two-sided Laplace transform domain (s~t) with 

s = Q +7*&) the complex frequency, the following definitions are useful 
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Let the ratio of internal to external wave impedances be given as 
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where e =e2/el. The case of small er (large I) can be thought of as a perturbation from the condition 

of a perfect electrical boundary around the target. For the perfectly conducting surround (|g |-~), the 
object has a denumerably infinite set of interior or cavity resonances, located along the ja> axis in the 
complex s-plane. For large but finite I, these resonances are shifted into the LHP by some amount. 
Considering a typical dielectric target embedded in a lossy soil, it is clear that many situations may exist 
where the impedance ratio is large and finite. It is for that class of problem which was considered in [3], 
and will be further developed here. 

The work in [3] considered the perturbation from the cavity resonance condition described above 
for an infinite slab of half-thickness "a" and a sphere having radius "a." A summary of the method 
developed in [3] will be given here, with details of the derivations available in that note. The main idea 
is to solve the problem of scattering from the geometry of interest exactly (normal incidence for the slab), 
for arbitrary e^Cj. From that solution, cavity modes can be obtained by letting £ -«, and the desired 
perturbation from the cavity value found by an appropriate expansion of the solution for large but finite 
I. The resulting formulas for the frequency perturbation of the a-th mode are given below [3], where 
the superscript on E or H indicates the reference direction (surface normal or coordinate) as appropriate 
for the field in question. 
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The approximation in (3) is valid when \{sa' ej/oJ > 1 as discussed in [3]. In the above, F signifies 

the type of mode and Ta = Jö^\JT0 a is a normalization factor. The complex natural frequency is obtained 

as s*=sl'F+As*, with s°,F representing the cavity mode resonance. For the slab, the unperturbed 

resonances (cavity modes) are obtained from sinh(2s0 Taj =0. For the sphere, the cavity resonances for 
[0 Er I 0 Er     \V sa'   Ta in\

sa'   VJ =0 where in are the modified 
spherical Bessel functions and the prime denotes differentiation. The cavity resonances for the Hr-modes 

(0 Hr     \ sa'   ^/=0-   A similar procedure can be applied to normal 
incidence scattering from a infinite dielectric cylinder of radius "a", resulting in 
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where i|/ is the radial coordinate in the cylindrical coordinate system. For this case, the cavity 

resonances are obtained from iJs^T^j =0 for the Ez-modes (TMZ), and from li(s°'H' Ta) =0 for the 

Hz-modes (TEZ), where ln are the modified Bessel functions. It can be seen that the factor $_1, evaluated 
at the interior resonance frequency of the unperturbed cavity mode, is common to all three geometries. 
The Er-modes for the sphere and the Hz-modes for the cylinder require multiplication by an additional, 
primarily geometrical factor. The reason that the Er-modes of the sphere and the Hz-modes (not the Ez- 
modes) of the cylinder require an additional multiplicative factor is due to the reference coordinate 
chosen. For the sphere, the radial coordinate is naturally chosen, and mode type is defined with respect 
to presence or absence of a radial field component. The radial field component is, of course, everywhere 
normal to the spherical surface. For the infinite cylinder, the z-axis naturally provides the reference 
coordinate, which is everywhere tangential to the cylindrical surface. If the modes are defined with 
respect to presence or absence of a radial component (everywhere normal to the surface in question), then 

the E-type modes for both the sphere (Er) and infinite cylinder (2i *) require an additional multiplicative 
factor, whereas the H-type modes do not.  If the z-axis is chosen as the reference coordinate, then the 
roles of the E and H-type modes for the cylinder become interchanged, compared with the radial (i|r) axis 
reference. 

The method described in [3] is only amenable to objects which can be solved exactly in closed 
form for arbitrary Gj ,e2. Since most realistic dielectric target shapes of interest do not correspond to the 
above geometries (with the possible exception of the sphere), a more general formulation is desirable. 
The derivation of a general perturbation formula which should be fairly accurate for large $ is presented 



in the next section, although the result will be stated here as 
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where the fields are the cavity mode fields evaluated at the cavity resonance, H0=H0(sa' ).  It can be 

seen that the formula predicts that for a general body the perturbation is always of the form T1. 
multiplied by a factor which is primarily geometrical. When applied to the slab, sphere, and cylinder 
geometries, the perturbation formula (5) exactly reproduces the results from the analysis method presented 
in [3], i.e., (2),(4). 

Considering that many dielectric targets of interest, such as mines, have the shape of a finite- 
height cylinder, the formula (5) was applied to that geometry, as shown in Fig.l. The resulting 
frequency shifts are 
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i+i3^ where where Öm B is the Kronecker delta function.    For the Ez-modes, s°,£ Ta=j. xnp+l—— 1 

J (x  ) =0 defines the p-th resonance of the n-th order Bessel function, and q describes the variation 
along the height of the cylinder.  The subscript o then denotes a combination of (n,p,q) integers.  For 

theHz-modes, s°'H*Ta=j   x'^p+l^\ where Jn'(x'Bp)=0 provides the p-th resonance of the derivative 

of the n-th order Bessel function.  As a check, for the infinite cylinder (d/a-~) Eq.(6) reduces to the 
form (4). 

A special case of interest is the flat disk with no z-variation (q=0), 
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where typically (a =d) might be of interest but only setting q=0 is necessary to obtain (7). 
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Fig. 1. Finite dielectric cylinder geometry. 
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It can be seen that for a thin disk (a>d) the frequency shifts for the Ez-modes are very large. This large 
damping is due to the surface-to-volume ratio becoming large, resulting in the inability of the cavity to 
store appreciable energy. It should also be noted that the Hz-modes are the same as those for the infinite 
cylinder, whereas the Ez-modes have the additional multiplicative factor (1+a/d). 

IE.       Derivation of General Perturbation Formula 

In this section the perturbation formula (5) will be derived. The method follows directly from 
the treatment in [5], where the usual application is to determine the effect of conductor wall loss in cavity 
problems. It will be shown that the formula is generally applicable to any low-impedance medium 
external to the object of interest. 

Consider the geometry shown in Fig. 2. In Fig. 2(a), an object described by surface S enclosing 
volume V containing a medium electrically characterized by (e^) is shown immersed in a perfectly 
conducting background. The cavity formed by such an object will resonant at a pure imaginary frequency 

s0, with corresponding modal fields E0,H0. In Fig. 2(b), the same object is embedded in a lossy 
medium characterized by ep \i0, with the permittivity being generally complex to account for loss. With 
no restrictions on the various material parameters, Maxwell's curl equations can be stated for each 
situation as 

-VxE0=s0\i0H0 -VxE=sv.0H 

VxH0=s0e2E0 VxH=se2E 

Taking the dot product of E0 with VxH, and of H with Vx£0, and adding yields 

E0- Vx# - H- Vx£0 = s^ £• £0 +s0 u0ff• H0 . <9> 

Similarly, taking the dot product of E with VxH0, and of H0 with Vx£, and adding yields 

E>VxH0-H0-VxE = s0e2EE0+s\i0H-H0 . (10> 

Applying the vector identity V-(Ax8) =B-VXA-A-VXB and subtracting (9) and (10) results in 

V-(HxE0-H0xE) =[e2£-4-1i0Ä-Ä0](S-50) . d« 

Upon volume integration of (11), and application of the divergence theorem, 
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Fig. 2. 2(a) shows unperturbed (cavity) geometry, 2(b) depicts perturbed geometry. 



• As = s-s0 = 
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Since n-(Hx£() = -H-nxEQ, and nx£0=0 on S, we get 

j(H0-n*E)dS 

As = (13) 
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which is an exact expression for the resonant frequency shift in terms of the unknown fields E,H 
At this point two approximations are introduced to simplify the above expression. First, consider 

the typical situation that this type of formulation is applied to, that of a cavity with good but not perfectly 
conducting walls. For that situation, waves enter the medium surrounding the cavity approximately as 
plane waves propagating normal to the cavity surface [6]. In that case the field components at the cavity 

surface are related as nxE=ZlHT, with H7 being the tangential component of H, and 
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For good conductors (| a1/sel |>1) (14) is often approximated as, 
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Note also that Zt = l'lZ2 regardless of approximations, with I large because of the conductivity term. 
Now consider the case of interest here, where £ is large due to the real permittivity. For I large 

enough, waves should enter the exterior medium approximately as plane waves propagating normal to 

the object's surface. In this case, the relation between the field components is still given by hxE=ZxHT 

Since H has components normal and tangential to the object's surface, while H0 is purely tangential, (13) 
can be written as 
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The above expression still involves the unknown fields E,H.  As a first order approximation, assume 

that these fields can be replaced with their corresponding values for Zj-O, i.e., E~E0,H~H0 with 

E0,H0 purely real and imaginary, respectively.   In that case, E0'E0= \E0\
2  and H0-H0 = -\H0\

2, 
leading to 
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Since at resonance the stored electric energy is equal to the stored magnetic energy, 
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Finally, applying the normalization factor Ta to (18) results in 
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where the explicit dependence of the a-th cavity resonance frequency on mode type is included. 

IV.       Conclusion 

The natural resonances of a dielectric target embedded in a low-impedance medium are 
considered. A simple formula is presented which describes the perturbation of an object's natural 
frequencies from the interior cavity resonances of the same object when immersed in a perfect conductor. 
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The perturbation formula is valid for any object embedded in a low-impedance background, and is 
specifically applied to the dielectric disk shape, which resembles a large number of practical dielectric 
mines. 
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